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Abstract. We solve theO (n, 1) nonlinear vector model on the Bethe lattice and show that it
exhibits a transition from ordered to disordered state fet @ < 1. If the replica limitn — 0

is taken carefully, the model is shown to reduce to the corresponding supersymmetric model.
The latter was introduced by Zirnbauer as a toy model for the Anderson localization transition.
We argue thus that the non-compact replica models describe correctly the Anderson transition
features. This should be contrasted to their failure in the case of the level correlation problem.

1. Introduction

In the study of systems with quenched randomness, historically the first way of treating the
disorder averages was the so-called replica method of Edwards and Anderson [1]. In this
method one introduces ‘replicas’ of the original system and calculates annealed averages
for this replicated system. Then the use of the identity

I zZn—1
logZ = lim
n—0 n
allows one to recover the properties of the original system.

For the problem of Anderson localization, the replica fields describing electrons may
be chosen to be either fermionic (Grassmann) or bosonic. In either case one can construct
an effective field theoretic description in terms of a nonlineamnodel for the matrix field
which belongs to some compact manifold for fermionic replicas and some non-compact
manifold for bosonic ones (see, e.g. [2]).

Another way to treat the disorder is the supersymmetry method of Efetov [3]. In this
method one introduces both fermionic and bosonic degrees of freedom and the resulting
o-model field is of the supermatrix structure.

It was realized some time ago that the replica method suffers from serious drawbacks.
Verbaarschot and Zirnbauer showed explicitly [4] that the replica method fails to give a
correct non-perturbative result for a problem of energy-level correlation which is equivalent
to a zero-dimensionat-model, while the supersymmetry method works nicely. Since then
the prevailing opinion in the literature on the Anderson localization problem has been that
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the replica method may be at best considered as a perturbative tool, not being able to
describe properties of disordered (localized) phase.

The aim of our paper is to reconsider the correspondence between supersymmetric
models and non-compact models in the replica limit. For this purpose we analyse the
solution of two ‘toy’ models on the Bethe lattice. The first is one of the simplest models
with non-compact symmetry, namely th@(n, 1)/ O (n)-vector model. The other is its
supersymmetric counterpart, the so-called ‘hyperbolic superplane’ (see [5, 6]).

The paper is organized as follows. In section 2 we set up the general description of
properties of theO (n, 1)-model in terms of a single ‘distribution function of local-order
parameter’P (9). Doing this in the spirit of dimensional continuation, we consider parameter
n to be any real number large enough to ensure convergence of integrals. In section 3 we
similarly consider a supersymmetric version of our model. Section 4 is the central section
of the paper; here we discuss the replica limit> 0 and show that if we take it carefully all
the results for thed (rn, 1) modelexactlyreproduce results of the supersymmetric treatment.

In the following sections we proceed to solve i¢n, 1) model. Our analysis follows very
closely that of previous papers devoted to the problem of Anderson localization on the Bethe
lattice [7—9] and therefore we omit many details. We find that@h@, 1) model exhibits

two phases with a phase transition between them for agyz0< 1. We obtain the critical
behaviour of different correlators near this transition and show that it is exactly the same
as exhibited by the supersymmetric model. Finally, section 8 contains a discussion of our
results.

2. O(n, 1)-model: general equations

We start with the Hamiltonian
H=JY mni-nj+H) o
(ij) i

Herei and j refer to the sites of the Bethe lattice with coordination numbef 1 and
n = (o, m) is a (n + 1)-component vector sweeping the hyperboldid-!, defined by
n? = 02 — w2 = 1. This hyperboloid is the symmetric space associated withothe 1)
group: H*! = O(n,1)/0(n). We parametrizen as followso = (1 + 7?)%/2 = cosl¥,
0<0 < oo,

sinh6 cosg,

sinhé sing, cosg:
. ! ? ¢17--'9¢n72€[0’7{] ¢nfl€[0727[)'

sinhf sing; . .. sing,_1
With this parametrization the scalar productis- n; = o;0; —m; - ; > cosh;, —0;) > 1
and therefore, the HamiltoniaHl is bounded from below only foy, H > 0. TheO(n, 1)-
invariant measure of™! is

dn = a dd sinh' =16 dg1 sin" =2 g1 dgo SIN* > ¢y . . . dp_1
wherea is a normalization constant to be fixed later.
Now we introduce a ‘distribution function of the local-order paramet¢h) in the
usual manner. Namely, we cut one of thet- 1 branches coming from site and integrate

the part of the Boltzmann weight egp?) over this branch. The resulting functid?(n)
satisfies the integral equation

P(n) = /dn’L(n, n)D(n')P™(n’) 1)
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where we introduced the following notationi(n,n’) = exp(—Jn - n’), D(n’) =
exp(—Ho'). Knowledge of the functior?(n) allows us to calculate the partition function
Z = [dn D(n)P"*1(n), one-site, averagesi(n)) = Z~* [ dn A(n)D(n)P"*1(n), and
‘weighted’ correlators

N(r)
(A(no)B(n,))w = ?/an A(no) D (no) P™ (no)

x(]‘[ [ s man ni)>P(nr)B(nr) @)
i=1

Mn,n) = L(n,n)D®n)P"(n)

where the factoV (r) = (m + 1)m’~* counts the number of sites located at the distance
from a given site (without this factor all the correlators exponentially decay because of the
geometry of the Bethe lattice).

The constant: in the definition of the measurendcan be chosen arbitrarily. It is easy
to see that rescaling of the measure changes the overall normalizati®mofand Z but
does not affect either one-site averages or correlators. This allows us to choose a convenient
normalization forP(n) as follows. Note that wheili# = O equation (1) admits a constant
solution. Then we require that this solution be simplyn) = 1 or, equivalently, that

/dn’ L(n,n) =1 (3

This fixesa = (J/Zn)P(ZKp(J))‘l, where byp we denote the combinatiom — 1)/2
which is often encountered in the following, aig,(J) is the modified Bessel function.

The magnetic fieldd breaks theD (n, 1) symmetry down ta0 (n). Then the functionP
may depend only oa or, equivalently, or®. This allows us to perform angular integrations
in (1) yielding

P(0) = / do" L(6,6")D®")P"(0) (4)
0
LL6.6) = 1 sinhg"\’”
LT 2K, (7)) \ sinhg
x exp(—J coshd coshg’) (2 J sinhé sinhg’)21,/5,_1(J sinhé sinhd’)
D(9") = exp(—H coshy’) (5)

where I,(x) is the modified Bessel function. Similar integration may be done in
expressions for the partition functiod = aS,_; f0°° do sinH~teD(©)P" 1), where
S,_1 = 2x"?/T'(n/2) is the volume of the spher§"~!, and correlators. In particular
upon averaging of. only the oc-component survives giving the ‘order parameter’

CZS,,,]_
zZ

For the invariant correlatomg-n,) = (ogo,) — (o - m,) the angular integrals give different
kernels for longitudinatG- (r) = (coshg, coshy,),, and transversé;,.Tj (r) = (moimyj)y parts

(o) = (coshp) =

f do sinh*~1 9 coshw D () P"+1(6).
0

aS,—1N(r)
Z

X < 11 /:O do; My (6;-1, 91‘)) P(6,) coshp, ©)

G-(r) = / ddo sinH' 1 6y coshby D (6o) P™ (Ho)
0
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Sy—1N o .
GlL.(r) = ai_,-“;z(r) / dbo sintt' 6o D (6o) P™ (6o)
n 0

><<11/000 do; M1 (6;_1, 9,-)>P(9,)sinh9, (7)

where M 1(6,6’) = L_1(6,0)D(0")P" ("),
L7(0,0) = o <W)p
2K,(J) \ sinho
x exp(—J coshh cosh¥’) (27 J sinhd sinhe)/21, »(J sinhd sinhg’).
Equations (2), (6) and (7) may be written symbolically as
(A(no)B(n,))w = Z~'N(r){A(no)|M"| B(n,))

whereM represents an integral operator with one of the kermgld/,, or M. Introducing

the complete setp,) of eigenfunctions ofM: M|p,) = Alp,) we can rewrite the

correlators as

(Alpa)(PalB)
(@alpa)

We choose operatord/ to be non-symmetric, which means that the left and right
eigenfunctions are different.

m+1 -
(A(no)B(r))w =~ = ;(m, A) ®)

3. Supersymmetric version: hyperbolic superplane

In this section we consider the supersymmetric version of@ie, 1) model, namely a
nonlinear model with field-taking values on the so-called hyperbolic superplane. This object
is constructed as follows (see [5, 6]). We consider a set of five-component vectors

Ip = (U, T, T2, é» _g)

where the first three components are commuting, whereas the last two are Grassmannians
(we use the adjoint of the second kind, see [10] for a review of supermathematics). Next
we consider the grou@ of linear transformations in the space of vectgrsvhich preserve
the ‘length’ |y/||? = 02 — 72 — 72 — 2£&. Let K be the subgroup of; which separately
preserves? andn2 + 2 + 2££. Then the coset spag/K is isomorphic to the space of
vectorsy of unit length||v/|| = 1. This is the hyperbolic superplane.
We will use the following parametrization of/K: 71 = sinhé cosg, 7, = sinhé sing,

o = (14 sintt 6 + 2££)Y2 = coshy + £&/ coshp. In this parametrization th&-invariant
measure orG/K is

33

dyr =a1 dry dro dE dE = a <1— )desinh9d¢d§ dt.
o cosif 6

The Hamiltonian in this case is taken to be
H= JZI},’I//]' +HZ(T;.
(i) i

We again choose the constant in the definition of ds such that the integral
[dy’ exp(—Jyy') = 1. This givesa = €’ /27. Proceeding as in section 2 we introduce
the functionP (¢) (by symmetry it actually depends only er) which satisfies the equation

P(o) = /ohp/ exp(—J Yy’ — Ho')P™ (o).
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Expanding both the left-hand side and the right-hand side in powers of Grassmann variables
and integrating them out we get, from the last equation,

P(0) = exp(J — J coshy) e ¥ p™(0) + /oo do’ Lo, 6))D®)P" () (9)
0

L1o(8, 8" = J sinhg exp(J — J coshy coshy’) I1(J sinhd sinho’). (10)

The first term in (9) is the boundary term resulting from integration by parts.

If we put® = 0 in (9) we obtainP(0) = e P"(0) which means thatP(0) =
exp(H/m —1)) or P(0) = 0. To haveP(9) = 1 as a solution foif = 0 we have to choose
P(0) = exp(H/(m — 1)).

We can also perform Grassmann integrations in formulae for the partition function
Z = €&’ exp(2H /(m — 1)), one-site averagesi(o)) = A(0) and ‘longitudinal’ correlators
(A(0g)B(0,))w = N(r)A(0)B(0). In particular we have

(coshy) =1 G (r) = (000, )w = N(r) GL(r)=0 (11)

where subscript ¢ refers to the connected correlator. For the transverse coﬂﬂﬂtorz
(moimyj)w We obtain after some calculation

e'N(r)
z

x < l_[ /OO d6; Lto(6;—1, 9[)D(9i)Pm_l(9i)) P (6,) sinh6, (12)
i=1Y0

Gl =8, /O déo D(60) P (6o)

L1o(0, 0") = J sinhg exp(J — J coshy coshp’) Ip(J sinhd sinho’).

4. Replica limit

Now we study what happens with the equations of section 2 fortbhe 1)-model in the
replica limit whenn — 0, namely whether they reduce to those of section 3 or not.

First of all, if we simply setz = 0 in (4) we getP(6) = [ d§’ Lio(6, 0D (6 P19
with kernel (10), which differs from (9) by the absence of the boundary term. From this we
could conclude, in particular, th&t(0) = 0 in the replica limit and, therefore, this limit gives
the incorrect answers. However, this simple recipe is wrong. To see this, let @s=s6t
in (4) before taking the replica limit. Using the smalkxpansion/,(z) ~ (z/2)"/T(v+1)
valid for v # -1, -2, ..., we get

P(0) = aSn_lfoo do sinb' =16 exp(—J cosh9) D(6) P™ (6). (13)
0

If we assume thaP (0) £ 0 then the integral in the last equation is divergent at the lower
limit if we setn = 0. At the same timeS,_1 = 0 for n = 0, so the expression (13) is of
the type 0 oo in the replica limit and should be studied in a more careful way. For this
purpose, let us consider the following identity:

SH/ do sini~1o£ )
0

= f(O)sH/oo do sini 16 + SH/OO do sinlt~te[F(6) — f(0)].
0 0

Here the first term is finite for & n < 1 and givest”I'(—p) f(0), whereas in the second
term the differencef () — f(0) makes the integral convergent even foe= 0. Now we
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can safely take the replica limit in which the second term disappears, and we get
|imos,1,1f do sinlt~t6f ) = f(0). (14)
n— 0

Therefore, the replica limit of (13) is simplp (0) = e ¥ P (0) which is exactly the result
for P(0) from section 3.
Now we can perform a similar trick for arbitrasy

/0 do" LL(0,0) f(0) = f(O)/O dG/LL(G,Q/)Jr/O do"LL(8,0)[f(©®) — f(O].

Before we take the replica limit, the integral in the first term here equals unity due to
normalization of kernelL(n, n’) (3). In the second term we can safely take the replica
limit as before. The kernel there beconigg (9, ') of (10). After that we split the second
term again into two pieces to get

n—0

Iim/ do’ L (0,0 f(O) = f(O)(l—/ de/LLo(Q,G’)) +/ do’ Lio(8,0") £ (6.
0 0 0
The integral in the first term can be performed (see e.g. [11]) and we get as the result

Iimofco 4o’ LL(0,6) f(8') = f(0) exp(J — J cosh9) + /OO do’ Lio(0,0") £ (0. (15)
n— 0 O

Then in the replica limit (4) becomes exactly (9) of section 3!
The alternative way of getting (15) is to separate the two contributions to the modified
Bessel function which enters the integral kerfigkd, 6") using the recursion relation

n N 1 z\(/2-1
Lny2)-1(z) = El(n/Z)(Z) + Lny2)1+1(2) =~ F/2) (é) + I(2) n— 0.
The crucial point is that the first term here cannot be neglected, although it has a vanishing
coefficient in the limita — 0, since the corresponding integral owémwill diverge in this
limit. Thus, in full analogy with the treatment of (13), this singular contribution should be
first evaluated at finitez, and only then can the limit — O be taken. This again gives
(15).

The use of prescriptions (14) and (15) allows us to show that equations for all the
guantities of interest from section 2 in the replica limit reduce to those of the supersymmetry
method of section 3. This is the main result of our analysis. In the remaining sections we
find that our model exhibits ordered and disordered phases fgri0< 1. We find the
transition point between them and solve for the critical behaviour of correlators near this
transition. We explicitly show then that in the replica limit this behaviour is identical to the
one found in [7, 8] for the supersymmetidecmodel and in [9] for the Anderson model on
the Bethe lattice.

5. Ordered phase and transition point

For J > 1 we expect an ordered state with spontaneously broken symmetry, where all the
ns are slightly fluctuating around-direction. The transverse componentsare small and

we can expand in themt ~ 1+ w2+ ---. Then the kernel of (1) becomes Gaussian and,
therefore, the equation admits (for any valuendfa solution which is also Gaussian

P(n) = c exp(—3am?) (16)
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wherea = {J(m—1)— H+[(J (m —1)— H)?4+4mJ H]*/?}/2m andc is some normalization
constant. With this form oP (n) we perform Gaussian integrals to find for a small magnetic
field

GL(r) ocnm™ GlL.(r) = 5,-,; exp<—Hr> (17)
(m —1)ps (m —1)ps
where ‘spin stiffnessips = J. So the longitudinal correlator is massive, while transverse
modes are Goldstones with long-ranged correlationsfoe 0.

The non-compact nature of th@(n,1) model makes it rather unusual from the
traditional point of view. For example, mean-field theory for this model does not give
any transition at all: the system is always ordered. If we expect to have disordered phase
for J « 1, then in this phase the order parameter will be large for small magnetic field,
diverging whenH — 0.

The symmetry breaking factob () (5) becomes significant for cosh~ H~! or
6 ~ In(2/H), therefore it is convenient to change variablest te- In(H coshd) in (4).
After such a change the argument of the Bessel function becomes large forFnaaltl,
using asymptotic formulé2rz)¥?1,(z) — & we arrive in the limitH — 0 at

P(t) = /OO dt' Lt — YD )P (t) (18)

L(t) = exp(—pt — J coshr) D(t) = exp(—¢€).

1
2K, (J)

This equation was derived under the assumption that the solBtisra function of variable
H coshy for small H. Such a solution become® = 1 in the limit H = 0. The solution
of the ‘ordered type’ (16) is not contained in (18) or, rather, it corresponds to the trivial
solution P = 0.

The qualitative behaviour of the solution of (18) should be as follows. For large positive
t (t > 0) the functionP(¢) exponentially goes to zero because of the symmetry breaking
term D(¢'). For large negative (+ « 0) the main contribution to the integral in (18) comes
from ¢’ <« 0 because the kernél(r — ¢') is sharply peaked at = ¢'. But in this region
D(¢') ~ 1 and the equation (18) admits the solutiBn= 1. In the regionr ~ 0 there
should be a kink connecting the two asymptotic soutions. The precise form of the solution
can be found numerically by iterations starting with= 1. But such an iterative procedure
is convergent to the solution of described type only for small enaughf J > J. where
J.. is the critical coupling, this solution becomes unstable, the kink-at) starts to move
to negativer until the solutionP (9) takes the form characteristic of the ordered phase. In
fact (18) is very similar to the one studied by Zirnbauer [8], so we follow very closely the
stability analysis of this paper.

Fort « 0 we dropD(¢') and linearize the simplified equation around the constant
solution P(t) = 1 — 8 P(¢) with

SP(t) = m/ d’ Lt —t)SP(t). (19)
—0o0
Because of the translational invariance of this equation it admits exponential solutions
[ dt Lt — 1) e = A(v) €, where

Kpin(D)
K,(J)

is an eigenvalue of the integral operator with the kerh@l— ¢').

A(v) = (20)
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T ¥ T T T

ORDER

DISORDER

Figure 1. Solution of equation (22) (phase diagram on the n plane) form = 2.

Let us make a mathematical remark. In terms of veator(19) corresponds to
§P(n) =m [dn' L(n,n)§P(n), i.e. §P(n) is an eigenfunction of am (n, 1)-invariant
integral operatof. with kernel L(n, n'). The space of such functions is spanned by the so-
called spherical functions of group(n, 1) (see, e.g. [12]). In our case @f(n)-symmetric
P(0) these are the zonal spherical functions

¥, (0) = (sinhg)*"/2p /% (coshp) (21)

where P/ (z) is the Legendre function. The functioh, () is an eigenfunction of. with
an eigenvalueA (v) given by (20). Some properties of these functions are present in the
appendix.

For the problem of stability of the asymptotic solutiéh= 1, the relevant values of
are real positive numbers. Indeed, the natural perturbatiym) induced by the symmetry
breaking termD(r) ~ 1 — € in the regionr <« 0 is §P(r) = € with v = 1. Analysis
similar to that of [8] shows that ifn Amin > 1, whereAmin = min, A(v), then the solution
P = 1 is unstable and collapses to the trival solut®n= 0 (ordered phase). This happens
for any value of coupling constauft for n > 1 because in this cadé,,(J) > K,(J) and
mAmin = mA(0) = m > 1. On the other hand, for & n < 1, K,(J) = K,(J), and
p +v may be smaller thatp|. In this case there is a transition at the value of the coupling
constant/; determined by the equation

Ko(Jc) _1
K)p1(Je)
Solution of this equation fom = 2 is shown in figure 1.

(22)

6. Correlators in the disordered phase

From now on we restrict our attention to the casel® < 1. We will also assume that
magnetic field is very smallH « 1. In this case we can approximai0) by 1. Then
for J < J. the function

1 0 < In(2/H)

P(0) ~ {
0 0 > In(2/H)
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P(8)

8

Figure 2. FunctionP(9) for n = 0, J = 10°%, H = 10719 obtained by numerical solution of
equation (9).

with a kink connecting these two regions néa& In(2/H). Typical solution of (9) of this
type forn =0, J = 108, H = 1079 is shown in figure 2. Approximating this solution
by a step function we estimate the partition function as

In(2/H)
Z = aS,H/ do sini~te
0
which is not singular agf — 0, so we will calculate it forH =0
Z= aSH/ do sintt =16 = an”T'(—p). (23)
0

The finiteness of this quantity reflects the fact that the total volume of the hyperkidfoid
is finite for 0< n < 1. We also obtain the ‘order parameter’

aSn—l

In(2/H) S
/ do sint 10 coshy ~ & "Z_lH*”. (24)
0

(o) ~
n

So (o) diverges whenH — 0 in the disordered phase, unless= 0, in which caseo)
becomes non-critical (similar to the density of states in the Anderson transition).

To obtain the expression for correlators we again perform the change of variables
Hcoshy = € in (6) and (7). To leading order in/H, both G- and G, become the
same (up to a factas;;/n)

MH‘”‘1 / dtoe’”"D(to)P'”(to)(]_[ / dr; ML(ti_l,ti)>P(tr)e‘".
-0 i—1Y=

VA
The range of integration for an operator with kerdél (¢, ¢') is infinite, which means
that the spectrum of eigenvalues is continuous. In this case (8) for the corr€latprs

G-(r) =

G-(r) = %H‘"‘lf dr W(L)AZ(A)(mA,)"
mZ 0
where A2()) = (e’”|¢;(t))<¢'x(t)|e‘) and W(A) comes from the normalization of

eigenfunctions. Right and left eigenfunctio¢§'(r) in the limit H — 0 should approach
¥_p1ir(0) and sini~t 0y _,.i,(9), or in the regiory < 0

1
9 (1) o< exp(F pr) Sin(it +5(1)) (25)



5342 | A Gruzberg ad A D Mirlin

with eigenvalueA, = K, (J)/K,(J). As is suggested by (A.2) and (A.4) the normalization
of y!"(r) should be

S(a—2A)
W(A)

where W (1) oc A2 for small . The smallx behaviour of the ‘phase shif§() in (25) is
found matching the asymptotic behaviour (25)¢tar) = O for ¢+ > 0, which is again the
effect of the termD(z). Such matching gives that(}) should be at least linear ik for
small A. Using this we can show that(A) ~ O(2) for small A. Also expandingnA; in
Je — J and inx we findmA, ~ 1 — ag(J. — J) — axA?. Combining all the above results
we arrive at

/ dr ¢! (L, (1) =

o0
G (r) x nH_”_lf di A2 exp(—ag(Je — J)r — ao)?r) oc nH "1 =3/2 exp(—r /&)
0
Gl o< 8;;H"1r™2 exp(—r/€)

whereé ~ (Jo — J)~L.
In the replica limit these equations reduceGb(r) = 0 and

Il = ILiTOHGiTj(r) oc 812 exp(—r/€)

which has the same form as the density—density correlator in the localized regime in [7-9].

7. Correlators in the ordered phase close to the transition

In the caseJ — J; < J; (just above the transition) we expect spontaneous symmetry breaking
which, in terms of the functio® (9), takes place at some large scdlalivergent at/ = J.
such that

1 0 < In2A

PO) ~
©) {O 0 > In2A.

Similarly to the previous section we find that partition function is non-singulat as oo,
so we take it to be equal to its value At(23). Again, as in (24), we find

(o) ~ 9t
o)y~ —=
nZz

The long-distance behaviour of the correlators in this phase is determined by the
eigenvalues of the operator with kern®(n, n'), see (2). Because of the form of the
function P(6) the integration range i@ for this operator is finite, and the spectrum of
its eigenvalues is discrete. It is easy to see thatHot O the largest eigenvalue of this
operator is Ym. Indeed, forQ € O(n, 1) using invariance of the kerndl(n, n’) and the
measure 4 we get P(Qn) = [dn’ L(n,n/)P"(Qn’). Taking Q to be infinitesimally
close to unity and expanding we obtain

dP(n) dP(n’) ,
do do’
The functions| f;) = n;dP(n)/do are the Goldstone modes associated with symmetry
breaking. Integrating out angular variables in (27) we have
drP©) dpP(9’)
Cdg do’

A", (26)

T = m/dn/L(n, n)P" (n)) (27)

m / do’ Lt(6, 6 )P 10 (28)
0
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In the asymptotic region I« 6, 8’ « In2A the kernelL1(0,0’) — L6 — ') of
(18), equation (28) becomes the same as (19) which meangtt@t has the asymptotic
behaviour

dP(9) C .

— R —pb AD 29

@ 5 EXp(—po)sin (29)

where A satisfiesKi, (J)/K,(J) = 1/m. Expanding this in small. and smallJ — J. we
find

A~ (T = J)Y2. (30)

The fast decrease @f”~1(0) neard = In 2A chooses the value df such that function (29)
has the first node at this point: = =/ In 2A. Combining this with (30) we find

A ~ exp(constantx (J — Jo)~Y?). (31)

The value of the constar@ in (29) may be found as follows. RY/do is related to
the functions P(9) of (19) in an obvious manner: RYdd = —dsP/df. Using this and
writing 8 P(0) ~ C1A~t exp(—ph) sin(A0 + 8(1)) we gets(r) = tam*(r/p) ~ A/p and
C = —C1(A® + p®Y2 ~ —Cq|p|. The functions P should approach the value unity near
6 =In2A. This givesC; ~ |p|(2A)” and

C ~ —p2(2A)*. (32)

Now we evaluate the largest eigenvallig.x of the operator with kerneM (n, n’) for
small H using first-order perturbation theorvi max = (fiIM|f;)/{f:f;) (no summation!).
Since kernelM (n, n') is non-symmetric( f;| differs from| f;) by the factorP”1(n). Then

we have
dP \?
(fulfr) = /dn P"(n) <d771)
o

00 2
- aS’”/ do sintt—2o Pm-1(9) (dP(9)> .
n 0 d@

Using (29) and (32) we estimatg| f1) to be

S CZ In2A ) Sn—
(fulfr) oc 2202t 40 sirP A0 oc L2 A In3 24,
n A2 Jy n

In the presence off, (27) is replaced by
dP(n)
do
Using this equation we perform integration by parts and keep only linear teristanfind
(Al Z(o)
(1M f1) = - Hm2(m+1)'
Then for the maximal eigenvalue we hawe\max = 1 — H/((m — 1)ps), where the ‘spin
stiffness’
_m(m+1) (fil f)
P m -1 Zlo)
For the final evaluation of the correlatof (ng) B(n,)),, we have to calculatd2(A) =
Yo (Alfi)(filB)/{fil f1). For the longitudinal correlatoA(n) = B(n) = coshp, in
which case(f;| costw) = [dn P"(n)om;(dP(n)/do) = 0 and A%(A) = 0. This means
that the decay ofi* (r) is governed by smaller eigenvalues and, theref6td) is massive

T = /dn/L(n, n/)%(Pm(n/) e 7.
(0}

x A7 IN®2A ~ (J — Jo)~¥2 exp(—constantx (J — Jo)"Y?). (33)




5344 | A Gruzberg ad A D Mirlin

even for H = 0, which is to be compared with (17). On the other hand, for Goldstone
modes we havéf;|n;) = [dn P"(n)m;7;(dP(n)/do) = —8;;Z(c)/(m + 1) and for the
transverse correlator we finally have

m+1 .
Glj(r) = 8ij == A%(A) (m Ama)

_ (o) H
= n— Dps exp(‘ (n 1>ps’> | o

Note that again, as before, in the replica limit our equations (31), (33) and (34) exactly
correspond to the results of [7-9].

8. Discussion

In this paper, we have solved the non-compéxi:, 1) model on the Bethe lattice for
arbitrary n. The analytical continuation procedure allows us to considers being an
arbitrary positive number. We find that far > 1 the symmetry of the model is always
broken, so that the system is ordered and the order parameter has a finite value. This is an
agreement with [13], where the system was shown to be ordered=#ot andn — oo above
two dimensions. (Note that the Bethe lattice is effectively infinite dimensional.) However,
for 0 < n < 1 we find a transition from the ordered to disordered phase, when the coupling
strengthJ decreases. In the replica limit— 0, our solution reproduces exactly that for the
supersymmetric version of the model. The latter is nothing but the hyperbolic superplane
introduced by Zirnbauer [5, 6] as a toy model for the Anderson localization transition. In the
whole region 0< n < 1 the qualitative picture of the transition and the critical behaviour
are analogous to those of the supersymmetric model of Zirnbauer, which shows in turn all
the essential features of the Anderson transition on the Bethe lattice studied in [7—9]. The
success of the replica trick may seem surprising, since we know [4] that it gives wrong
results in the case of the level correlation problem. The crucial difference is that near
the Anderson transition only the non-compact sector of the supersymmetriodels is
essential, whereas for the level correlation problem both compact and non-compact sectors
are equally important. The similar reason explains the agreement between the replica trick
renormalization group calculation of asymptotics of various distributions [14] and the recent
study of these asymptotics via the supersymmetry method [15].

When the manuscript was in preparation, we learnt about the work byejaipf who
studied the supersymmetric model of Zirnbauer [5, 6] in three dimensions and found the
critical behaviour analogous to that expected for the Anderson localization transition.
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Appendix

The functions (21) have the following asymptotic behaviour

L2 To+p) e TV =D) (e
Y@ > 1)~ NG (F(v+n—l)e + T () e ) (A1)

Among the functions (21) there is a special subset with —p +iA, A > 0. These

functions are real and form a continuous basis in the sp&¢d., o), d9 sinH'~16):

> H -1 . X _ i 9/
/0 d9 sinH =20y 412 (O)_psin (6) = M(/\)m 2) (A.2)
/0 A L)Y p1in OV —p1in(0') = SINK" 080 — )
T +in?
n) = W (A.3)

Forn # 1 and for small values of, the asymptotics (A.1) and the spectral measure (A.3)
take the form

n/2

ptin(@) ~ ————— exp(—pb) sinrd 1) ~ T2(p)A2. A4
Y prin(0) N p(—pbH) n(d) (p) (A.4)
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